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Krypton tagging velocimetry (KTV) requires high signal-to-noise ratio (SNR) to observe
high-speed boundary layers and flow structures. In order to optimize the choice of laser
excitation line for use in KTV (212.556 nm, 214.769 nm, 216.667 nm), a theoretical and
experimental investigation of excitation processes was undertaken. This paper presents a
multi-path, two-photon excitation, cross-section calculation, using an assumed finite basis of
states consisting of 4p, 5s, 6s, 7s, 5p, 6p, 4d, 5d, and 6d orbitals. From the relative magnitudes
of two-photon cross-sections for five Krypton lines, an excitation spectrum is constructed
and compared against excitation spectrum data, with encouraging results. From this work
and the successful comparison to experiment from our lab and those in the literature, we
conclude that the optimal line is 212.556 nm for Kr-PLIF and single-laser KTV. For KTV
where the read step in performed with a continuous wave (CW) laser diode, the 216.667 nm
write-laser excitation is optimal.

Nomenclature

c = Speed of Light (m/s)
e = Electron Charge, (C)
εo = Free Space Permittivity, (C2/(N·m2))
h = Planck Constant, (J·s)
h̄ = Reduced Planck Constant (J·s/rad)), h̄ = h/(2π)
mkr = Mass of a Kr Atom, (kg)
me = Mass of an Electron, (kg)
Z = Atomic Number of Kr
Ze = Effective Nuclear Charge
α = Fine Structure Constant, α = e2/(4πεoh̄c)
ao = Bohr Radius, (cm), ao = 100h̄/(αmec)
dD = Debye Length, (m)

Ry = Rydberg Constant, (J), Ry = h̄2/(2mea
2
o) = (1/2)meα

2c2

kb = Boltzmann Constant, (J/(atom·K))
r = Radius, (Bohr Radii, ao)
θ = Azimuth Angle, (rad)
φ = Polar Angle, (rad)
ε̂ = Polarization Unit Vector of Laser Electric Field
q = Polarization Component
ε̂ · ~r = Dipole Operator, (Bohr Radius)
D = Matrix Representation of Dipole Operator, (Bohr Radius)
G = Matrix Representation of Green’s Function Operator, (s/rad)

M
(2)
fg = Two-Photon Transition Matrix Element from states |g〉 to |f〉, (a2o· s)
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Wf,g = Two-Photon Excitation Rate, (1/s)
Wpi = One-Photon Ionization Rate, (1/s)

σ
(2)
o = Two-Photon Cross-section, (cm4)
σ(2) = Two-Photon Rate-coefficient, (cm4·s)
σpi = One-Photon Ionization Cross-section, (cm2)
I = Laser Intensity (J/(cm2·s))
|k〉 = Intermediate State k
|g〉 = Ground State
|f〉 = Final Two-Photon Excited State
Ek = Energy of level k, (eV)
ωL = Angular Frequency of Laser Excitation, (rad·s−1)
ωk = Angular Frequency for Intermediate Energy State k, (rad·s−1), ωk = Ek/h̄
ωg = Angular Frequency for Ground Energy State g, (rad·s−1), ωg = Eg/h̄
ωij = Observed Angular Frequency for Transition from states i to j, (rad·s−1), ωij = (Ei − Ej)/h̄
g(2ωL)= Lineshape Function, (s)
F = Laser Photon Flux, (photon/s), F = I/(h̄ωL)
êi = Vector Representation of State |i〉
λij = Transition wavelength from state i to state j, (nm)
Aij = Einstein coefficient (transition probability) for transition from state i to j, (s−1)
n = Principal Quantum Number
n∗ = Effective Principal Quantum Number
l = Angular Momentum Quantum Number
l∗ = Effective Angular Momentum Quantum Number
m = Azimuth Angular Momentum Quantum Number
L = Total Orbital Angular Momentum Quantum Number for an Atom
S = Total Electron Spin Quantum Number for an Atom

J = Coupled Angular Momentum Quantum Number, J =
∣∣∣ ~J∣∣∣ =

∣∣∣~L+ ~S
∣∣∣

M = Azimuth Projection of ~J
wt = # of allowable, nonzero transitions from state |j〉 to state |i〉
δd = Quantum Defect
Rnl = Radial Wave Function
Y ml = Scalar Spherical Harmonic Function
YLS
JM = Spherical Harmonic Tensor Function

P = Pressure, (Pa)
V = Volume, (m3)
T = Temperature, (K)
Te = Electron Temperature, (K)
Ne = Number of Electrons, (electrons)
t = Time, (s)

I. Introduction

There are multiple excitation lines for the two-photon excitation of Kr in the 190-220 nm range: 192.749 nm,
193.494 nm, 193.947 nm, 202.316 nm, 204.196 nm, 212.556 nm, 214.769 nm, and 216.667 nm. The optimal
choice of excitation line for krypton fluorescence experiments is subject to test requirements, such as signal-
to-noise ratio (SNR), background luminosity, and, in the case of KTV, the write/read delay time. When
determining the optimal scheme for krypton fluorescence experiments, evaluating the two-photon cross-
section is the starting point and, as such, the motivation for the current work.

Krypton fluorescence experiments have attracted great interest over the last decade because of their promise
in making fundamental contributions in subsonic and supersonic combustion in addition to supersonic and
hypersonic aerodynamics.1 Two such experiments are krypton planar laser-induced fluorescence (Kr-PLIF)
and krypton tagging velocimetry (KTV). Kr-PLIF and KTV are performed by the addition of a small mole
fraction of Kr to a high-speed/reacting flow. This strategy has enabled the non-intrusive measurement of
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important quantities such as density, temperature, mixing-fraction, and velocity that were not previously
possible in difficult-to-measure gas flows.

Initial Kr-PLIF work was performed at 214.7 nm,2–6 which now includes thermometry.7–9 Additionally, the
204.196 nm line has also been used for Kr-PLIF.10–12 Experimental Kr-PLIF excitation line comparisons have
been performed by,13,14 with the observation that the 212.556 nm was superior. High-speed Kr-PLIF was
performed at 212.556 nm by Grib et al.15 Original KTV work relied on write-line excitation at 214.769 nm to
generate the metastable Kr state.16–25 In more recent KTV work26–28 and in this paper, we observe higher
SNR for single-laser, unfiltered KTV with a 212.556 nm write-line excitation; additionally, we observe that
two-photon excitation at 216.667 nm is optimal for KTV where the read step uses a laser diode.

In this paper, we calculate the two-photon cross-sections of Kr to (1) remove any ambiguity in the superiority
of the 212.556 nm line for Kr-PLIF and single-laser KTV; (2) provide fundamental physical insights to
verify the Richardson et al.13 excitation spectrum; (3) provide reliable cross-sections for modeling other Kr
excitation schemes; and (4) prepare a framework for calculating multiphoton excitation spectra for other
noble gas atoms. Herein, we detail our calculation method and compare the results of those calculations to
experimental results with success. Additionally, we present time- and pressure- resolved experimental data
of excitation performed with a near IR laser diode, for which the 216.667 nm line KTV is optimal.

II. Krypton Tagging Velocimetry

The current state of KTV rests on (2 + 1) resonant enhanced multiphoton ionization (REMPI) to partially
ionize Kr gas and observe a long-lasting afterglow produced by electron-ion recombination and its resulting
radiative cascade.29 REMPI is a compound process consisting of two-photon excitation followed by a one-
photon ionization. It is magnitudes more efficient than direct three-photon ionization.30 In Table 1, there
are multiple excitation lines for the two-photon excitation of Kr in the 190-220 nm range that are accessible
with commercially available optics and laser systems. Krypton atoms can be excited to any of these levels
during the write step to form the tagged tracer. This paper considers and compares the last three lines:
212.556 nm, 214.769 nm, and 216.667 nm.

Table 1: Accessible Kr levels with two-photon excitation. Racah nl[K]J notation.

λL (nm) Energy Level (-) E (cm−1)

192.749 6p[1/2]0 103761.6336

193.494 6p[3/2]2 103362.6124

193.947 6p[5/2]2 103121.1419

202.316 5p′[1/2]0 98855.0698

204.196 5p′[3/2]2 97945.1664

212.556 5p[1/2]0 94092.8626

214.769 5p[3/2]2 93123.3409

216.667 5p[5/2]2 92307.3786

Following the transitions in the energy level diagrams in Fig. 1 along with the relevant transition data in
Table 2, the three KTV schemes are performed as follows.

1. λL = 216.667 nm

Write Step: Excite krypton atoms with a pulsed tunable laser to form two tagged tracers,
metastable Kr and Kr+, through (2+1) photoionization. Two-photon excitation of 4p6(1S0) →
5p[5/2]2 (216.67 nm, transition A) and subsequent one-photon ionization31 to Kr+ (216.67 nm,
transition B) occur. This is followed by decay to metastable 5p[5/2]2 → 5s[3/2]o2 (transition
D) and resonance states 5p[5/2]2 → 5s[3/2]o1 (transition C), and other transitions, J, K and L
resulting from the recombination process,32,33 I. Using a camera oriented normal to the flow, the
position of the write line is recorded by gated imaging of the laser-induced-fluorescence (LIF)
from transitions (C, D, J, K, L).
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Read Step: After a prescribed delay, record the displacement of the tagged metastable krypton
and Kr+. With an additional tunable laser, excite 5p[3/2]1 level by the 5s[3/2]o2 → 5p[3/2]1 tran-
sition (769.454 nm, E), which is followed by decay to metastable 5p[3/2]1 → 5s[3/2]o1 (829.81 nm,
G) and resonance 5p[3/2]1 → 5s[3/2]o2 (769.454 nm, F) states. The position of the read line is
marked by gated imaging of the LIF from transitions F and G and the residual fluorescence from
transitions J, K and L that result from the recombination process, I.

2. λL = 214.769 nm

Write Step: Excite krypton atoms with a pulsed tunable laser to form two tagged tracers,
metastable Kr and Kr+, through (2+1) photoionization. Two-photon excitation of 4p6(1S0) →
5p[5/2]2 (214.769 nm, transition A†) and subsequent one-photon ionization31 to Kr+ (214.769 nm,
transition B†) occur. This is followed by decay to metastable 5p[3/2]2 → 5s[3/2]o2 (transition N)
and resonance states 5p[3/2]2 → 5s[3/2]o1 (transition O), and other transitions, J, K and L resulting
from the recombination process,32,33 I. The position of the write line is marked by gated imaging
of the LIF from these transitions (N, O, J, K, L), recorded with a camera positioned normal to
the flow.

Read Step: After a prescribed delay, record the displacement of the tagged metastable krypton
and Kr+. With an additional tunable laser, excite 5p[3/2]1 level by the 5s[3/2]o2 → 5p[3/2]1 tran-
sition (769.454 nm, E), which is followed by decay to metastable 5p[3/2]1 → 5s[3/2]o1 (829.81 nm,
G) and resonance 5p[3/2]1 → 5s[3/2]o2 (769.4547 nm, F) states. The position of the read line is
marked by gated imaging of the LIF from transitions F and G and the residual fluorescence from
transitions J, K and L that result from the recombination process, I.

3. λL = 212.556 nm

Write Step: Excite krypton atoms with a pulsed tunable laser to form two tagged tracers,
metastable Kr and Kr+, through (2+1) photoionization. Two-photon excitation of 4p6(1S0) →
5p[1/2]0 (212.556 nm, transition A∗) and subsequent one-photon ionization31 to Kr+ (212.556 nm,
transition B∗) occur. This is followed by decay to the resonance state 5p[1/2]0 → 5s[3/2]o1 (tran-
sition M) and other transitions, J, K and L resulting from the recombination process,32,33 I. The
metastable state is formed through transition J. The position of the write line is marked by gated
imaging of the LIF from these transitions (M, J, K, L), recorded with a camera positioned normal
to the flow.

Read Step: After a prescribed delay, record the displacement of the tagged metastable krypton
and Kr+. With an additional tunable laser, excite 5p[3/2]1 level by the 5s[3/2]o2 → 5p[3/2]1 transi-
tion (769.454 nm, E), which is followed by decay to metastable 5p[3/2]1 → 5s[3/2]o1 (829.81 nm, G)
and resonance 5p[3/2]1 → 5s[3/2]o2 (769.454 nm, F) states. The position of the read line is marked
by gated imaging of the LIF from transitions F and G and the fluorescence from transitions J, K
and L that result from the recombination process, I.

The extent of ionization in all three schemes is proportional to the intensity of the laser beam, which
is limited by the available laser power and the experimental setup (ex. window transmission and laser
beam splitting). Lower laser power reduces (and can effectively eliminate) ionization and its subsequent
radiative cascade, which may or may not be good for tracing. At low power, fluorescence from transitions
J, K and L become insignificant. At the write step, this is not an issue in the three schemes because the
fluorescence from transitions C, D, N, O and M dominates that of transitions J, K and L. At the read step,
the schemes behave differently. The schemes that use λL = 214.769 and 216.67 nm create metastable Kr
through transitions D and N, which do not rely on ionization. The fluorescence from the re-excitation of the
metastable state, transitions F and G is often sufficient on its own without the need for the fluorescence from
transitions J, K and L. Therefore, these two schemes can be used even without ionization. However, the λL =
212.556 nm scheme is completely reliant on recombination processes and their resulting radiative cascade to
create fluorescence at the read step. Metastable Kr in this scheme is produced though recombination, I, and
subsequently, transition J. Hence, if there is no ionization, I and J do not occur. Then at the read step, there
is no metastable Kr to re-excite (transitions E, F and G do not occur), and there would be no fluorescence
from transitions J, K and L. Therefore, this scheme requires the Kr atoms to be ionized to form Kr+ and
metastable Kr as the tracers. Consequently, the power requirement for this scheme is higher than that of

4 of 27

D
ow

nl
oa

de
d 

by
 1

55
.2

46
.1

51
.3

8 
on

 J
an

ua
ry

 7
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
13

00
 



Figure 1: Energy diagrams (not to scale) with Racah nl[K]J notation for the three excitation schemes.
Left: 212.556 nm. Center: 214.769 nm. Right: 216.667 nm. Transition details in Table 2. States 5p
and 5s represent the numerous 5p and 5s states (tabulated in Mustafa et al.27) that are created by the
recombination process, I. Transitions J, K and L represent the numerous transitions in the 5p-5s band. 14.0
eV marks ionization limit of Kr.

Table 2: Relevant NIST Atomic Spectra Database Lines Data, labels match Fig. 1. Racah nl[K]J nota-
tion. Transition I is not listed because it is not an atomic-level transition. It represents the recombination
process. Entries in the J/K/L row represent ranges and order of magnitude estimates since J, K and L in
Fig. 1 represent numerous transitions in the 5p-5s band. k and i denote the upper and lower energy levels
respectively.

Transition λair (nm) Nature Lower Level Upper Level Aij (1/s) Ej (cm−1) Ei (cm−1)

A 216.670 Two-Photon 4s24p6, 1S0 5p[5/2]2 (-) 0 92307.3786

A† 214.769 Two-Photon 4s24p6, 1S0 5p[3/2]2 (-) 0 93123.3409

A∗ 212.556 Two-Photon 4s24p6, 1S0 5p[1/2]0 (-) 0 94092.8626

B 216.667 Single-Photon 5p[5/2]2 Kr+ (-) 92307.3786 112917.62

B† 214.769 Single-Photon 5p[3/2]2 Kr+ (-) 93123.3409 112917.62

B∗ 212.556 Single-Photon 5p[1/2]0 Kr+ (-) 94092.8626 112917.62

C 877.675 Single-Photon 5s[3/2]1 5p[5/2]2 2.2×107 80916.7680 92307.3786

D 810.436 Single-Photon 5s[3/2]2 5p[5/2]2 8.9×106 79971.7417 92307.3786

E/F 769.454 Single-Photon 5s[3/2]2 5p[3/2]1 4.3×106 79971.7417 92964.3943

G 829.811 Single-Photon 5s[3/2]1 5p[3/2]1 2.9×107 80916.7680 92964.3943

H 123.584 Single-Photon 4s24p6, 1S0 5s[3/2]1 3.0×108 0 80916.7680

J/K/L 750-830 Single-Photon 5s 5p 106 − 107 80000.0000 90000.0000

M 758.950 Single-Photon 5s[3/2]1 5p[1/2]0 4.31× 107 80916.7680 94092.8626

N 760.364 Single-Photon 5s[3/2]2 5p[3/2]2 2.732× 107 79971.7417 93123.3409

O 819.230 Single-Photon 5s[3/2]1 5p[3/2]2 1.1× 107 80916.7680 93123.3409

the other two.

A simplified version of KTV that utilizes only a write laser26,27 can also be implemented by omitting the
read laser and its re-excitation of the metastable state (transition E). Therefore, in all three schemes, the
fluorescence imaged at the read step is generated solely from transitions J, K and L. As mentioned earlier,
transitions J, K and L result from the radiative cascade of a cold Kr plasma. While the use of only one laser
offers significant reductions in cost and experimental complexity, the use of a single laser necessitates high
laser power, sufficient to ionize krypton atoms.

Fig. 2 shows the time resolved fluorescence signal from schemes that utilize λL = 212.556 and 214.769 nm.
This data is from the single-laser version of an excitation scheme with no read laser, and was taken in a 99%
N2/1% Kr gas mixture at 5 torr. The yellow region in the graph indicates the camera gate at the write step,
which is typically a 5 ns exposure. The two green regions are indicative of the camera gate at the read step
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with a 500 (left) and 1000 (right) ns delay, and a 50 ns exposure. The results show that the signal-to-noise
ratio, SNR, of the 212.556 nm scheme is higher relative to the 214.769 nm scheme when no laser diode is
used.

Figure 2: Time-resolved Kr Fluorescence Signal in a P = 5 torr, 99% N2/1% Kr gas mixture using 212.556 nm
and 214.769 nm two-photon excitation wavelengths with no read laser. The yellow region is representative
of the camera gate at the write step. The two green regions are representative of the camera gate at the
read step with a delay of 500 and 1000 ns respectively.

III. Relation of Cross-section to Signal-To-Noise Ratio

By definition, the fluorescence signal, Q, from an atomic transition is calculated per Eckbreth34 as,

Q = hfeNuAΩV/(4π) (1)

where h is Planck’s constant, fe is the frequency of emitted light, Nu is the population of the upper level,
A is the overall Einstein coefficient, Ω is the collection solid angle, and V is the emitting volume. As Eq. 1
shows, SNR ∝ Q ∝ Nu.

During a laser pulse, the two-photon excited state population, denoted by Nf , is governed by

dNf
dt

= Wf,gNg − (Wpi +Af +Wf,g + q)Nf , (2)

where Wf,g is the two-photon excitation rate from the ground state |g〉 to final state |f〉, Wpi is one-photon
photoionization rate from final state |f〉 to the ionized state, Ng is the population of the ground state Kr
atoms, Af is the overall Einstein coefficient, and q is the quenching rate for the excited state. At the rising
edge of the laser pulse, Nf is small and is approximately proportional to Wf,g,

Nf ≈Wf,gNg∆t. (3)

The one-photon photoionization rate Wpi in Eq. 2 is

Wpi = Fσpi, (4)

where the photoionization cross-section σpi is calculated by Khambatta et. al35 as

σpi =
8× 10−18

Ze

√
− Ef
Ry

(
h̄ωL

−Ef

)3 .
(5)
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In Eq. 5, Ze = 1 is the charge of the Kr ion, Ry is the Rydberg constant, and Ef is the energy of the
final state. The one-photon photoionization cross-section σpi is approximately the same for the different Kr
excitation lines because of the closely clustered energies of the eight states. Therefore, the two-photon cross-

section σ
(2)
o is the most significant in determining the excitation spectrum for the Kr lines. Researchers, such

as Saito et al.30 and Khambatta et al.,35 respectively developed detailed analytical and numerical population
models, featuring Eq. 2. In this work, the solution to Eq. 2 is not explored beyond Eq. 3.

Wf,g is defined as

Wf,g = F 2σ(2), (6)

where σ(2) is the two-photon excitation rate-coefficient and F = I/(h̄ωL) is the photon flux. I is the laser
intensity; h̄ is the reduced Planck’s constant; and ωL is the laser angular frequency. The rate-coefficient, σ(2),

is a function of the excitation wavelength and is directly proportional to the cross-section σ
(2)
o . Consequently,

the wavelength with the highest value of σ
(2)
o will result in the highest fluorescence signal after the laser pulse.

That is, SNR ∝ σ(2)
o right after the rising edge of the laser pulse.

IV. Two-Photon Cross-Section Calculation for Kr for 190− 220 nm Excitation
Range

Methods for calculating two-photon cross-sections include first-order perturbation theory, the Green’s func-
tion method, R-matrix theory, and time-dependent density-functional theory (TDDFT). First-order pertur-
bation theory for multiphoton excitation and ionization is described by Lambropoulos36 who provides a
thorough review of multiphoton processes and calculations, and demonstrates the matrix mechanics nature
of the problem. Khambatta et al.35,37 uses the first-order perturbation theory of Lambropoulos36 and the
oscillator formulas from Hillborn38 to calculate two- and three-photon cross-sections for argon and krypton.
He presents both a single-path and multi-path calculation. However, that calculation is limited by the avail-
ability of tabulated Einstein coefficients. Additionally in that work, the dipole-matrix element is asymmetric,
thus unable to capture the mathematical symmetry of the two-photon transition matrix element. A similar
single-path calculation for the excitation of Kr to the 6p level was made by Bokor et al.39 The calculations
in Bokor et al.39 and Khambatta et al.35,37 serve as important benchmarks for the two-photon cross-section
calculation and (2+1) photoionization modeling. Mustafa et al.27 used the single-path approximation to
estimate the two-photon cross-section for the 212.556 nm excitation line for krypton. An additional moti-
vation for the current work was to assess the validity of the results of Mustafa et al.27 and explore if other
excitation lines might result in higher fluorescence.

A two-photon cross-section calculation was conducted using multi-path, first-order accurate perturbation
theory. The matrix mechanics formulation of Lambropoulos,36 who provides a thorough review of multi-
photon processes and calculations, is used because it obtains all excitation pathways for a finite basis of
states. A Hartree-Fock radial wave function of the krypton ground state (4p6 1S0) a was assumed,40 and
oscillator-strength (OS) formulas were used upon the availability of NIST transition probabilities and data.41

We note that a Kr gas mixture with naturally-occurring isotope mole fractions was considered because the
NIST line spectra database presents spectroscopic data for a naturally-occurring mixture of Kr,41 and the
laser pulse width is at least two orders of magnitude greater than the isotopic shifts of Kr. Additionally,
quantum-defect theory (QDT) was used to calculate electric dipole matrix elements 〈i| ε̂ · ~r |j〉 when NIST
transition probabilities were unlisted. This last inclusion of QDT is key to the success of our approach as it
enabled the inclusion of additional excitation pathways not included in previous works; and it determined
the sign of all pathway contributions to the two-photon matrix element.

When QDT is used to evaluate the purely radial matrix elements 〈r〉, scaled hydrogen radial wave functions
are constructed to represents excited Kr states. This is because a Hartree-Fock calculation showed that
excited krypton states exhibited hydrogenic behavior and could be approximated well by quantum-defect
radial wave functions that are calibrated by NIST line data. With the aid of QDT, a truncated spectral
expansion of a Green’s function was effectively constructed from a basis of intermediate Kr states (5s, 6s,
7s, 4d, 5d, and 6d states) that approximately satisfy the nonrelativistic Schrödinger equation. Within the

aRussell-Saunders Notation 2S+1LJ with S = 0, L = 0, and J = 0.
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framework of matrix mechanics, this expansion ultimately allowed the evaluation of the two-photon-transition
matrix element.

The two-photon cross-section σ
(2)
o is independent of laser intensity, time, and Kr concentration. It is a

constant, and it is a solution to the time-independent, non-relativistic Schrödinger equation b. At the rising

edge of the laser pulse, σ
(2)
o ∝ σ(2) ∝ Q ∝ SNR.34 The two-photon cross-section σ

(2)
o is related to the

two-photon excitation rate-coefficient σ(2) via the lineshape function g(2ωL) as

σ(2) = σ(2)
o g(2ωL). (7)

The two-photon excitation cross-section is calculated as

σ(2)
o = (2π)3(α)2ω2

L

∣∣∣M (2)
fg

∣∣∣2 a4o, (8)

where α is the fine structure constant, ao is the Bohr radius, and M
(2)
fg is the two-photon-transition matrix

element. The line shape function g(2ωL) is assumed to be of Gaussian form with a peak:

g(2ωL = ωT ) =
2
√

ln(2)/π√
2(∆ωL)2 + (∆ωT )2

. (9)

The linewidth of the laser is ∆ωL (1350 MHz in this work), and the Doppler linewidth, ∆ωT , is calculated
by

∆ωT = (2ωL)

√
8ln(2)kbT

mkrc2
, (10)

where kb is the Boltzmann constant, c is the speed of light, mkr is the mass of one krypton atom, and T is
the temperature of the Kr gas mixture.

The two-photon-transition matrix element is expressed as

M
(2)
fg =

∞∑
k=g

〈f |ε̂ · ~r| k〉 〈k |ε̂ · ~r| g〉
ωk − ωg − ωL

. (11)

For practical calculation on a computer, the summation over the intermediate state index k is truncated at
the N th state. Therefore, the transition matrix element,

M
(2)
fg =

N∑
k=g

〈f |ε̂ · ~r| k〉 〈k |ε̂ · ~r| g〉
ωk − ωg − ωL

, (12)

is summed over a finite basis of states, such as those listed in Table 5. The truncation criterion for two-
photon excitation is determined by a constraint on the maximum principal quantum number n of a bound
state: nmax. As n becomes large, the expected radius of a one-electron atom of effective nuclear charge Ze
is 〈r〉 = n2/Ze in Bohr radii.43 Per Park,44 the 〈r〉 is proportional to the Debeye length dD:

nmax =

√
ZedD

10ao
≈

 Z2
e εokb

e2
(
Ne

TeV
+ Ne

TV

)
(10ao)2

 1
4

, (13)

where Ne/V is the electron number density and Ni/V is the ion number density, Te is the electron tempera-
ture, and Ti is the Kr ion temperature. The factor of 10ao describes approximately the krypton van der Waals
diameter and represents a 90% reduction in the Debeye potential, ΦD, which is non-dimensionally described
by ΦD = 1/r exp(−rao/dD). For the (2+1) resonance-enhanced multiphoton excitation (REMPI) of Kr at
laser wavelength λL = 212.556 nm, room temperature T = 298 K, and pressure P = 1 torr, the electron tem-
perature is Te = 27626 K and number densities are calculated as Ne/V = Ni/V = 1.62× 1021 electrons/m3.

bRelativistic effects were neglected in the Schrödinger equation because the energy of the laser was much less than the rest
energy of an electron 3h̄ωL � mec2.42
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The electron temperature was obtained from 2(3h̄ωL−|Eion|)/3kb,45 and number densities were obtained via
the analytical population model of Saito et al.30 Assuming Ze = 1 for the Kr ion, the result is nmax = 7.42.
Therefore, N accommodates all states with a principal quantum number equal to or less than 7: n ≤ 7. This
is convenient because NIST transition probability data is limited for states with n ≤ 8.41

An approximate Green’s function, expressed as a truncated spectral expansion, is nested in the center of

the expression for M
(2)
fg :

G(~r, ~r ′) =

N∑
k=g

|k〉 〈k|
ωk − ωg − ωL

. (14)

Since Green’s functions are symmetric about variable exchange (~r ↔ ~r ′), G(~r, ~r ′) = G(~r ′, ~r), so M
(2)
fg =

M
(2)
gf . This mathematical property is a fundamental deviation from the oscillator-strength approach in

Khambatta et al.,35 which is one-sided and asymmetric. Therefore, the use of oscillator formulas, while
valid, causes the loss of symmetry in the transition-matrix element. This symmetry loss is problematic in
describing higher-order multiphoton excitation (three-photon and higher).

M
(2)
fg is a double tensor contraction of an infinite matrix space M = DGD. More importantly, due to the

invariance of multiphoton-excitation with respect to reference frame and basis |k〉 (See Appendix A for a
proof.), M = DGD is a symmetric, rank-2 tensor.

The evaluation of M
(2)
fg requires the evaluation of two reduced matrix elements of the form

〈i |ε̂ · ~r| j〉 = Dij , (15)

where Dij is an element of the matrix representation of the dipole operator D:

D =



〈g|ε̂ · ~r|g〉 〈g|ε̂ · ~r|1〉 〈g|ε̂ · ~r|2〉 · · · · · · 〈g|ε̂ · ~r|N〉
〈1|ε̂ · ~r|g〉 〈1|ε̂ · ~r|1〉 〈1|ε̂ · ~r|2〉 · · · · · · 〈1|ε̂ · ~r|N〉
〈2|ε̂ · ~r|g〉 〈2|ε̂ · ~r|1〉 〈2|ε̂ · ~r|2〉 · · · · · · 〈2|ε̂ · ~r|N〉

...
...

...
. . .

...
...

...
...

. . .
...

〈N |ε̂ · ~r|g〉 〈N |ε̂ · ~r|1〉 〈N |ε̂ · ~r|2〉 · · · · · · 〈N |ε̂ · ~r|N〉


. (16)

The two indices i, j of the matrix D represent the final state |i〉 and initial state |j〉, respectively. The
dipole operator, ε̂ · ~r, describes the rotation of two electric charges of opposite sign by an external electric
field. The denominator of Eq. 12,

Gii =
1

ωi − ωg − ωL
, (17)

can also be rewritten in matrix form as a diagonal matrix G:

G =



1
ωg−ωg−ωL

0 · · · 0 0

0 1
ω1−ωg−ωL

. . .
...

...
...

. . .
. . .

. . .
...

...
. . . 1

ω(N−1)−ωg−ωL
0

0 0 · · · 0 1
ωN−ωg−ωL


. (18)

G is the matrix representation of the Green’s function, Eq. 14. Rewriting Eq. 12, the transition matrix
element can be represented in matrix form:

M
(2)
fg =

N∑
k=g

DfkGkkDkg = êTfDGDêg, (19)
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where êi is a unit vector that identifies the state of the system. For example, the vector representations of
states |g〉, |1〉, |2〉, and |N〉 are

êg=



1

0

0
...

0


, ê1 =



0

1

0
...

0


, ê2 =



0

0

1
...

0


, and êN =



0

0

0
...

1


. (20)

Eq. 19 substantiates to a rank 2 tensor contraction of the Green’s function matrix G. The f th row of matrix
D is post-multiplied by the matrix G, which is then post-multiplied by the gth column of matrix D, resulting

in the scalar M
(2)
fg .

IV.A. The Calculation of Dipole Matrix Elements Dij Using QDT

In this section, the dipole matrix elements Dij are calculated via the central-field approximation,43,46 which
allows one to separate the effects of angular and radial components in the Schrödinger equation, expressed
in spherical coordinates. This allows a state |k〉 to be expressed as a product of one-electron, radial wave
functions Rnl(r) ·

∏
pRp(rp) multiplied by a tensor spherical harmonic YLS

JM (θ, φ). Here, subscript p denotes
an unexcited krypton electron, and nl denotes the quantum numbers of the valence electron to be excited
by the laser. This state is represented as |nLSJM〉, assuming LS spin-orbit coupling. The radius of the
excited valence electron from the Kr nucleus is r. The orientation of its angular momentum is described by
azimuth angle θ and polar angle φ. The set of all principal quantum numbers for the Kr atom is n, and the
principal quantum number of the excited electron is n. L is the total orbital angular momentum quantum
number of the atom, and l is the single-electron angular momentum number of the excited electron. S is the
total electron spin quantum number of the atom. For a true dipole moment transition, S remains constant
because the dipole moment operator ε̂ · ~r does not act on electron spin coordinates. The dipole moment
operator is solely written in terms of scalar spherical harmonics:46

ε̂ · ~r =

√
4π

3
r
∑

q=(0,±1)

εqY
q
1 , (21)

where the polarization component is εq; q = 0 for linear polarization; q = 1 for right-handed circular
polarization; and q = −1 for left-handed polarization of the laser’s electric field.47 The orientation of the
laser electric field defines the orientation of the z-axis in the spherical coordinate system imposed on the
nucleus of a Kr atom.

To evaluate the reduced matrix elements Dij , a simplified expression must first be obtained. By applying
the Wigner-Eckart Theorem,47 Dij may be rewritten as

Dij = 〈i |ε̂ · ~r| j〉
= 〈niLiSiJiMi |ε̂ · ~r|njLjSjJjMj〉
= 〈niLiSiJi |~r|njLjSjJj〉

×
∑

q=(0,±1)

εq

(
Ji 1 Jj

−Mi q Mj

)
(−1)1−Jj−Mi .

(22)

By using the definition of a vector ~r = rêr, radial coordinates are separated from angular coordinates:

Dij = 〈i |r| j〉 〈LiSiJi |êr|LjSjJj〉

×
∑

q=(0,±1)

εq

(
Ji 1 Jj

−Mi q Mj

)
(−1)1−Jj−Mi .

(23)
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Using the following expression from Messiah47 (Eq. C.89) for reduced matrix elements and irreducible tensor
operators of tensor rank k,〈

τ1τ2J1J2J
∣∣∣T (k)

∣∣∣ τ ′1τ ′2J ′1J ′2J ′〉 =

δτ2τ ′2δJ2J′2

〈
τ1J1

∣∣∣T (k)
∣∣∣ τ ′1J ′1〉 (−1)J

′+J1+J2+k

×
√

(2J + 1)(2J ′ + 1)

{
J1 k J ′1
J ′ J2 J

}
,

(24)

the angular term 〈LiSiJi |êr|LjSjJj〉 can be further simplified, noting τ1 = τ ′1 = τ2 = τ ′2 = 1. The reduced
matrix element Dij becomes

Dij = δSiSj
〈r〉 〈Li |êr|Lj〉 (−1)Li+Jj+Si+1

×
√

(2Ji + 1)(2Jj + 1)

{
Li 1 Lj

Jj Sj Ji

}

×
∑

q=(0,±1)

εq

(
Ji 1 Jj

−Mi q Mj

)
(−1)1−Jj−Mi ,

(25)

where 〈r〉 = 〈i |r| j〉 is the purely radial matrix element. The term δSiSj implies that the dipole moment
operator does not act on electron coordinates. Next, using the Wigner-Eckart Theorem47 for the expected
value of a spherical tensor Yk of rank k,

〈l1 |Yk| l2〉 =

= (−1)l1

√
(2l1 + 1)(2k + 1)(2l2 + 1)

4π

(
l1 k l2

0 0 0

)
(26)

the expected value of the rank-1 unit vector êr, 〈Li |êr|Lj〉, can be evaluated. Dij becomes

Dij = δSiSj
〈r〉
√

(2Li + 1)(2Lj + 1)

×

(
Li 1 Lg

0 0 0

)√
(2Ji + 1)(2Jj + 1)

× (−1)2Li+Jj+Si+1

{
Li 1 Lj

Jj Sj Ji

}

×
∑

q=(0,±1)

εq

(
Ji 1 Jj

−Mi q Mj

)
(−1)1−Jj−Mi ,

(27)

which rearranges into

Dij = δSiSj
〈r〉
√

(2Ji + 1)(2Jj + 1)(2Li + 1)(2Lj + 1)

×

(
Li 1 Lg

0 0 0

){
Li 1 Lj

Jj Sj Ji

}
(−1)2Li+Jj+Si+1

×
∑

q=(0,±1)

εq

(
Ji 1 Jj

−Mi q Mj

)
(−1)1−Jj−Mi .

(28)

For allowable dipole transitions, the effect of the factor of −1−Jj−Mi+1, which arises from the definition of
the Wigner-Eckart Theorem, has no effect on the transition matrix element summation due to the consistent
parity of J , as shown in Table 3.
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Table 3: Parity Table for term −1−Jj−Mi+1. Jj = 0, 1 correspond to 2-photon transitions, and Jj = 0, 1, 2
correspond to 3-photon transitions. The term −1−Jj−Mi+1 does not contribute to the transition matrix
element summation because it is consistently the same value for each stage of a multiphoton transition for
all possible pathways.

Jj 0 1 2

Mi 0 1 0 -2 0 3

−1−Jj−Mi+1 -1 1 1 1 -1 1

The 2×3 matrix terms in parentheses are 3j-Wigner Symbols, and the 2×3 matrix term in brackets is the
6j-Wigner Symbol. 3j-Wigner Symbols enforce dipole moment selection rules, and the 6j-Wigner Symbol
quantifies the degeneracy of a transition occurring (it amounts to a normalization factor). Our research only
considers linear polarization of the laser electric field, q = 0, forcing Mi = Mj = 0 for all transitions j → i.
Si = Sj = 0 for all transitions because the Kr ground state has a total electron spin of zero, and the dipole
moment operator ε̂ ·~r does not act on electron spin coordinates. Li is the norm of the addition of two angular
momenta, Li = |~li+~lg|, which describes the angular momentum coupling between the excited electron and a
4p valence electron of opposite electron spin. Since the dipole moment operator does not operate on electron
coordinates, it turns out that Li = Ji for the dipole transitions we analyzed. A cartoon summarizing how
angular momentum changes during (2 + 1)-photoionization is shown in Fig. 3, and an angular momentum
table is provided in Table 4 to show how to calculate the coupled quantum L from the angular momenta of
two electrons, each with an azimuth orbital quantum number m = 0.

Figure 3: Angular momenta of a Kr atom during linearly polarized (2 + 1) multiphoton photoionization.
This cartoon demonstrates LS spin-orbit coupling for each Kr state at each stage of excitation: ground state
|g〉, intermediate state |k〉, two-photon state |f〉, and ionized state e−. For dipole transitions, ∆S = 0 and
consequently, J = L.

Table 4: Addition of the angular momentum of two electrons l1 and l2: ~L = ~l1+~l2. m = 0 for both electrons.

State L2 = l21 + l22 + 2~l1 · ~l2 L J

|g〉 12 + 12 + 2(1)(−1) = 0 0 0

|k〉 12 + 02 + 2(1)(0) = 1 1 1

|f〉 12 + 12 + 2(1)(±1) =

{
4

0

} {
2

0

} {
2

0

}
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Therefore, the simplified dipole matrix element is

Dij = δli,lj±1 〈r〉 (2Ji + 1)(2Jj + 1)

×

(
Ji 1 Jj

0 0 0

)2{
Ji 1 Jj

Jj 0 Ji

}
, (29)

noting that for a dipole transition ∆l = ±1. The factor of (−1)2Li+Jj+Si+1 is omitted because it does not
contribute any meaningful sign change in the summation. For dipole moments, parity is conserved, resulting
in consistent state parity. Si + 1 is always 1; 2Li is always even; and −1Jj is consistent for all considered
transitions. More interestingly, due to the consistent parity of J for transition states, Eq. 29 is symmetric
about variable exchange i ↔ j, which conforms to the symmetry property of a Green’s function Eq. 14.
Using identity (C.37) from,47 Eq. 29 can be further simplified to

Dij = δli,lj±1 〈r〉
√

(2Ji + 1)(2Jj + 1)

×

(
Ji 1 Jj

0 0 0

)2

. (30)

Now, the main difficulty with calculating Dij is the evaluation of the radial wave function integral 〈r〉:

〈r〉 = 〈Ri(r) |r|Rj(r)〉
∏
p

〈Ri,p(rp)|Rj,p(rp)〉

=

∫ ∞
0

r3Ri(r)Rj(r)dr (31)

because the form of the wave functions Ri(r) must be assumed from prior knowledge. The one-electron
model of Kr also assumes that only the radial wave function of the excited electron changes, an assumption
justified by a Hartree-Fock calculation.40 Therefore,

∏
p 〈Ri,p(rp)|Rj,p(rp)〉 = 1 due to the normalization of

the radial wave functions.

Excited states of noble gas atoms approximate one-electron atoms, and to first order, electric dipoles.
Quantum-defect theory correctly assumes that the excited states of atoms exhibit scaled, hydrogen-like
behavior, as verified by our Hartree-Fock calculation shown in Fig. 4. This observation was first made by
Rydberg48 and was later exploited by Bethe et al.,42 Bebb et al.,49 and McGuire.50,51 While Hartree-Fock
iterates for an explicit electron repulsion potential,40,46 quantum-defect theory directly incorporates the
effect of electron repulsion through the use of excited state energy as an input to scale the wave function.
With the verified assumption of hydrogenic behavior for excited Kr states, quantum-defect radial wave
functions can be used with confidence to describe the excited states of Kr.

Properly normalized hydrogen radial wave functions52 are expressed as

Rnl(r) =

√√√√[ (n− l − 1)!

2n((n+ l)!)

(
2Ze
n

)3
](

2Zer

n

)l
× exp

(
−Zer
n

)
L2l+1
n−l−1

(
2Zer

n

)
, (32)

with effective nuclear charge Ze = 1 and energy En = −Ry/n2. Meanwhile, quantum-defect radial wave
functions48 are scaled hydrogen radial wave functions and are written similarly as

Rnl(E, Im, r) =
2

(n∗)
2

√
Γ(n− l − Im(l))

Γ(n∗ + l∗ + 1)

(
2r

n∗

)l
× exp

(
−r
n∗

)
L2l∗+1
n−l−Im(l)−1

(
2r

n∗

)
, (33)
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Figure 4: Comparison between Hartree-Fock (HF) Radial Orbitals and Quantum Defect (QD) Radial Or-
bitals. This plot demonstrates the hydrogen-like behavior of Kr radial wave functions. This plot justifies
the use of quantum defect orbitals and validates Rydberg’s original observation of the hydrogenic behavior
of atoms.48

where the effective principal quantum number is

n∗ = n− δd, (34)

the quantum defect is

δd = n−
√
−Ry
E

, (35)

and the effective angular momentum quantum number is

l∗ = l − δd + Im(l). (36)

Γ is the gamma function; ( )! is the factorial function; and Lyn(x) is the associated Laguerre polynomial
function of degree n and input y evaluated at x. Eq. 33 is a scaled version of Eq. 32.

Quantum-defect radial wave functions are generated by four input parameters n, l, E, and Im, which are
determined by NIST data41 and are listed in Table 5 for a basis of Kr states. n and l are reported in the
Racah notation of a state. Absolute energy E is obtained by subtracting the first ionization energy of Kr
(13.9996053 eV) from the reported NIST energy because NIST reports energy relative to the ground state.
For the selection of the integer Im, Einstein coefficients are used to ensure that the radial wave functions
reflect experimental observations. Also, (δd − l− 1/2) ≤ Im < (n− l− 1).48 By minimizing the discrepancy
between calculated Einstein coefficients,38

Aij =
2e2ω3

ija
2
o

3c3hεo

∑
mj

|〈nilimi|~r |nj ljmj〉|2 , (37)

and tabulated NIST Einstein coefficients through integer variation of Im, acceptable radial wave functions
are constructed for excited Kr states.
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Table 5: Input Parameters for Quantum-Defect Radial Wave Functions. This table also provides the basis
of states used to calculate two-photon transition matrix element. Data was obtained from NIST.41 States
|5〉, |6〉, |9〉, |11〉, |12〉, |15〉, |16〉, and |17〉 are of critical interest for the laser excitation lines considered in
this paper. The two-photon excitation wavelengths, λL, are measured in vacuum.

Index State (Term Symbol)c n l E (eV) Im λL (nm)

g 4p6 1S0 4 1 −13.9996053 - -

1 (2P o3/2)5s 2[3/2]o1 5 0 −3.96720476 3 -

2 (2P o3/2)5s 2[3/2]o2 5 0 −4.08437309 2 -

3 (2P o1/2)5s 2[1/2]o1 5 0 −3.35597053 3 -

4 (2P o1/2)5s 2[1/2]o0 5 0 −3.43719109 2 -

5 (2P o3/2)5p 2[1/2]0 5 1 −2.33357724 3 212.556

6 (2P o3/2)5p 2[3/2]2 5 1 −2.45378261 1 214.769

7 (2P o3/2)5p 2[1/2]1 5 1 −2.69615013 2 219.374

8 (2P o3/2)5p 2[5/2]3 5 1 −2.55655804 3 216.698

9 (2P o3/2)5p 2[5/2]2 5 1 −2.55494904 1 216.667

10 (2P o3/2)5p 2[3/2]1 5 1 −2.47348948 1 215.136

11 (2P o1/2)5p 2[3/2]2 5 1 −1.85595245 2 204.196

12 (2P o1/2)5p 2[1/2]0 5 1 −1.74313881 2 202.316

13 (2P o1/2)5p 2[1/2]1 5 1 −1.85917847 1 204.250

14 (2P o1/2)5p 2[3/2]1 5 1 −1.89925407 1 204.927

15 (2P o3/2)6p 2[1/2]0 6 1 −1.13480243 3 192.749

16 (2P o3/2)6p 2[3/2]2 6 1 −1.18427475 3 193.494

17 (2P o3/2)6p 2[5/2]2 6 1 −1.21421328 2 193.947

18 (2P o1/2)6s 2[1/2]1 6 0 −0.963121959 2 -

19 (2P o3/2)6s 2[3/2]1 6 0 −1.614321866 1 -

20 (2P o1/2)7s 2[1/2]1 7 0 −0.885709772 1 -

21 (2P o3/2)4d 2[3/2]1 4 2 −1.645049675 1 -

22 (2P o3/2)5d 2[1/2]1 5 2 −1.129823313 2 -

23 (2P o3/2)6d 2[3/2]1 6 2 −0.577230406 1 -

24 (2P o3/2)6d 2[1/2]1 6 2 −0.649464393 3 -

The initial state |i〉 has a degenerate azimuth quantum number mi. In a pure dipole moment transition, the
only active quantum number is the angular momentum quantum number l. Unlike Hillborn,38 a weighted
summation must take place over both mi and mj to account for the degeneracy of both quantum numbers
in an isotropic electric field q = 0,±1. Therefore,

Aij=
2e2ω3

ija
2
o

3c3hεo

∑
mi

1
√
wt

∑
mj

∑
q=0,±1

|〈nilimi|~r |nj ljmj〉|2

. =
2e2ω3

ija
2
o

3c3hεo

〈r〉√ (2li + 1)(2lj + 1)

wt

(
li 1 lj

0 0 0

)2

=
2e2ω3

ija
2
o

3c3hεo

[
〈r〉 1√

3

]2
for s ⇔ p transitions

=
2e2ω3

ija
2
o

3c3hεo

[
〈r〉
√

2

9

]2
for p ⇔ d transitions,

(38)
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where wt is the number of nonzero transitions produced by the degeneracy of mi and mj in an isotropic
radiation field. 1/wt is the probability of a transition occurring. See Appendix B for the determination
of wt. For fixed li and lj , the value of wt can be determined from the number of nonzero Clebsch-Gordon
coefficients for varying mi, mj , and polarization component q. For s ↔ p transitions, wt = 3; and for
p↔ d transitions, wt = 9. Eq. 38 amounts to practical means to calculate Einstein coefficients from a set of
radial wave functions. Results are shown in Table 6. For the ground state |g〉, a Hartree-Fock radial orbital,
composed of a linear combination of Slater-type orbitals, from Clementi et al.40 is used:

R4p(r) = 0.08488× STO(2, 17.03660, r)+

0.00571× STO(2, 26.04380, r)+

0.04169× STO(3, 15.51000, r)+

− 0.07425× STO(3, 9.49403, r)+

− 0.26866× STO(3, 6.57275, r)+

0.01341× STO(4, 5.38507, r)+

0.51241× STO(4, 3.15603, r)+

0.42557× STO(4, 2.02966, r)+

0.18141× STO(4, 1.42733, r), (39)

where the normalized Slater Type Orbital (STO) function is defined as

STO(n, ζ, r) =
1√

(2n)!
(2ζ)

(n+1/2)
rn−1e−ζr. (40)

This ground-state Hartree-Fock radial wave function assumes a spherically symmetric electric charge distri-
bution and accounts to first order the electron-repulsion exerted on a 4p electron. Electron repulsion shields
a valence 4p electron from the attractive potential of the Kr nucleus, increasing its ground state energy be-
yond that of a pure one-electron atom of atomic number Z = 36. In eq. (40), ζ is interpreted as a shielding
parameter obtained by curve fitting the numerical results of a Hartree-Fock calculation.

In Table 6, Einstein coefficients are calculated via Eq. 38 with varying accuracy but to the correct order of
magnitude. The QDT parameter, Im, is tuned to maximize the accuracy of Aij . By obtaining the correct
order of magnitude and in some cases the correct Einstein coefficient, Table 6 further validates the use of
quantum-defect radial wave functions Eq. 33.

With a basis of wave functions calibrated on NIST atomic spectra data, Eqs. 19 and 8 are directly evaluated,
producing the two-photon cross-section data shown in Fig. 5. The values of cross-sections are shown in
Tables 7, 8, and 9. When quantum-defect radial wave functions are used in conjunction with oscillator
strength formulas for linear polarization,37 such as

〈i| ε̂ · ~r |j〉 =

√
3Aijhc3εo

2e2ωij

√
2Ji + 1

(
Ji 1 Jj

0 0 0

)
, (41)

good agreement is obtained with the Richardson et al.13 excitation spectrum, especially using basis sets
2 and 3, which include d orbitals. In Table 10, single-path cross-section results are also calculated and
tabulated for comparison to results listed in Table 9.

The resulting approach is a hybrid method for the evaluation of dipole matrix elements, consisting of
quantum defect theory and where possible, oscillator strengths. Another contribution of quantum defect
theory is the prediction of the sign of the radial matrix element from the evaluation of Eq. 31. The oscillator
strength, Eq. 41, must retain the same sign as Eq. 31 and Eq. 29. This sign determines which excitation
pathways make constructive and destructive contributions to the two-photon transition matrix element.
Also, wherever Eq. 41 is used for the evaluation of a matrix element, the equality, Dij = Dji, must be

cTwo Notations:41 (1) Russell-Saunders 2S+1LJ notation for Kr ground state |g〉. (2) Racah (2S1+1P o
J1

) nl(2S1+1)[K]J
o

notationdfor excited Kr states. ~K = ~J1 +~l; ~J = ~K +~s; and ~K = ~L+ ~S1.41 S1 is the total electron spin of the ion, s is the spin
of the excited electron, and L is the total orbital angular momentum. ~S = ~S1 + ~s.
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Table 6: Calculation of Einstein coefficients using quantum defect functions and comparison with NIST
experimental data.41

NIST Quantum Defect Theory

Transition Wavelength (nm) Aij(1/s) Acc.e Aij (1/s) % Error

|23〉 → |g〉 92.3713 1.14× 108 C 4.16× 107 63.5%

|24〉 → |g〉 92.8711 3.87× 106 C 2.64× 105 93.2%

|22〉 → |g〉 96.3374 3.35× 107 C 2.13× 107 36.3%

|20〉 → |g〉 94.5441 2.81× 108 C 1.0450× 108 62.8%

|18〉 → |g〉 95.1056 2.58× 107 C 6.8928× 107 167.2%

|19〉 → |g〉 100.1061 3.42× 108 C 2.68× 108 21.5%

|21〉 → |g〉 100.3550 1.82× 108 C 1.37× 108 24.8%

|3〉 → |g〉 116.4867 3.09× 108 A+ 2.33× 108 24.5%

|1〉 → |g〉 123.5838 2.98× 108 A+ 4.97× 108 66.7%

|15〉 → |2〉 427.5172 1.99× 106 C+ 1.74× 106 12.7%

|16〉 → |1〉 437.7351 3.74× 106 B 2.45× 106 34.4%

|15〉 → |1〉 445.5168 3.97× 105 B 4.92× 105 23.9%

|17〉 → |1〉 450.3617 7.8× 105 C 4.59× 106 488.7%

|5〉 → |1〉 758.7414 4.310× 107 A+ 4.77× 107 10.8%

|6〉 → |2〉 760.1546 2.732× 107 AA 2.78× 107 1.8%

|12〉 → |3〉 768.7361 4.064× 107 AA 2.98× 107 26.8%

|10〉 → |2〉 769.6658 4.27× 106 A 2.74× 107 540.9%

|13〉 → |4〉 785.6984 2.041× 107 A 2.14× 107 5.0%

|14〉 → |4〉 806.1721 1.583× 107 B+ 2.19× 107 38.6%

|8〉 → |2〉 811.5132 3.610× 107 AAA 3.50× 107 3.10%

|6〉 → |1〉 819.2308 8.94× 106 A 2.75× 107 207.3%

|11〉 → |3〉 826.5514 3.416× 107 AA 2.93× 107 14.2%

|9〉 → |1〉 877.9161 2.217× 107 AA 2.43× 107 9.66%

|7〉 → |3〉 893.1145 2.289× 107 A 2.24× 107 2.02%

used to ensure symmetry. This properly interfaces quantum-defect theory with oscillator strength formulas,
creating the hydrid dipole matrix element evaluation method and thus allowing for the eventual extension of
Eq. 19 to general multiphoton excitation. For example, for three photon excitation, the entire dipole matrix
D is used:

M
(3)
fg =

N∑
k=g

N∑
p=g

DfkGkkDkpGppDpg = êTfDGDGDêg. (42)

When using a hybrid dipole matrix element calculation scheme, selection of states with adequate exper-
imental data is crucial for reasonable results. Insufficient transition probability data rendered some state
omissions in the finite basis of states listed in Table 5. For example, only one 4d orbital, state |21〉, was
used in basis sets 2 and 3 (Tables 8 and 9) because it had the highest, observed transition probability of all
4d states between itself and ground, and it had the highest experimentally measured, transition probability
between itself and a 5p state: |21〉 → |10〉. It was the only state with high transition probabilities between
4d and 5p levels. More importantly, state |21〉 exhibited dipole-moment behavior, which could be described
by quantum-defect theory. The effect of other 4d orbitals on the excitation process is small but can be
better determined once more transition probabilities become available for transitions between 4d and 5p
states. However, the inclusion of other 4d states will not significantly change the excitation spectrum shown
in Fig. 5. The same reasoning was made for the inclusion of 5d and 6d states in basis set 3.
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Table 7: Two-photon Cross-sections using Basis Set 1: 5s, 6s, and 7s states.

Basis Basis Set 1: |g〉 , |1〉 , |2〉 , ... |17〉
Theory Quantum-Defect Quantum-Defect with Oscillator Strengths

λL (nm) σ
(2)
o (cm4)

σ(2) = σ
(2)
o g(2ωL) σ(2)

||σ(2)||∞
σ
(2)
o (cm4)

σ(2) = σ
(2)
o g(2ωL) σ(2)

||σ(2)||∞(cm4 · s) (cm4 · s)

192.749 7.02× 10−37 2.29× 10−47 0.005 1.73× 10−36 5.65× 10−47 0.016

193.494 5.01× 10−37 1.64× 10−47 0.003 3.70× 10−38 1.21× 10−48 0.0003

193.947 7.28× 10−37 2.39× 10−47 0.005 1.25× 10−37 4.10× 10−48 0.001

202.316 2.17× 10−35 7.39× 10−46 0.151 6.67× 10−37 2.27× 10−47 0.006

204.196 2.55× 10−35 8.74× 10−46 0.178 3.84× 10−37 1.32× 10−47 0.004

212.556 1.39× 10−34 4.91× 10−45 1.000 1.03× 10−34 3.63× 10−45 1.000

214.769 5.56× 10−35 1.98× 10−46 0.404 3.30× 10−35 1.18× 10−45 0.324

216.667 6.23× 10−35 2.24× 10−46 0.455 3.92× 10−35 1.41× 10−45 0.388

Table 8: Two-photon Cross-sections using only Basis Set 2: 5s, 6s, 7s, and 4d states.

Basis Basis Set 2: |g〉 , |1〉 , |2〉 , ... |18〉
Theory Quantum-Defect Quantum-Defect with Oscillator Strengths

λL (nm) σ
(2)
o (cm4)

σ(2) = σ
(2)
o g(2ωL) σ(2)

||σ(2)||∞
σ
(2)
o (cm4)

σ(2) = σ
(2)
o g(2ωL) σ(2)

||σ(2)||∞(cm4 · s) (cm4 · s)

192.749 2.56× 10−35 8.37× 10−46 0.094 2.80× 10−35 9.15× 10−46 0.133

193.494 9.85× 10−35 7.42× 10−46 0.084 1.60× 10−35 5.26× 10−46 0.077

193.947 1.73× 10−35 5.67× 10−46 0.064 1.20× 10−35 3.93× 10−46 0.057

202.316 1.04× 10−34 3.55× 10−45 0.400 1.95× 10−35 6.61× 10−46 0.0963

204.196 9.85× 10−35 3.37× 10−45 0.381 1.57× 10−35 5.39× 10−46 0.0784

212.556 2.51× 10−34 8.86× 10−45 1.000 1.94× 10−34 6.87× 10−45 1.000

214.769 1.32× 10−34 4.71× 10−45 0.531 3.95× 10−35 1.41× 10−45 0.205

216.667 1.38× 10−34 4.95× 10−45 0.559 6.34× 10−35 2.28× 10−45 0.331

Table 9: Two-photon Cross-sections using only Basis Set 3: 5s, 6s, 7s, 4d, 5d, and 6d states.

Basis Basis Set 3: |g〉 , |1〉 , |2〉 , ... |21〉
Theory Quantum-Defect Quantum-Defect with Oscillator Strengths

λL (nm) σ
(2)
o (cm4)

σ(2) = σ
(2)
o g(2ωL) σ(2)

||σ(2)||∞
σ
(2)
o (cm4)

σ(2) = σ
(2)
o g(2ωL) σ(2)

||σ(2)||∞(cm4 · s) (cm4 · s)

192.749 6.53× 10−35 2.13× 10−45 0.206 8.25× 10−35 2.70× 10−45 0.323

193.494 5.31× 10−35 1.74× 10−45 0.198 5.08× 10−35 1.66× 10−45 0.199

193.947 4.46× 10−35 1.47× 10−45 0.142 4.43× 10−35 1.45× 10−45 0.174

202.316 1.46× 10−34 4.96× 10−45 0.479 4.17× 10−35 1.42× 10−45 0.170

204.196 1.32× 10−34 4.53× 10−45 0.438 3.25× 10−35 1.11× 10−45 0.133

212.556 2.92× 10−34 1.03× 10−44 1.000 2.36× 10−34 8.34× 10−45 1.000

214.769 1.62× 10−34 5.79× 10−45 0.559 4.18× 10−35 1.49× 10−45 0.179

216.667 1.67× 10−34 6.01× 10−45 0.581 6.33× 10−35 2.27× 10−45 0.272
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Table 10: Single-Path Approximation Calculations.

λL (nm)
State State σ

(2)
o σ(2) σ(2)

||σ(2)||∞|k〉 |f〉 (cm4) (cm4 · s)
192.749 |1〉 |15〉 4.73× 10−37 1.55× 10−47 0.016

193.494 |1〉 |16〉 1.04× 10−37 3.40× 10−48 0.004

193.947 |1〉 |17〉 2.01× 10−37 6.60× 10−48 0.007

202.316 |3〉 |12〉 1.40× 10−35 4.75× 10−46 0.496

204.196 |3〉 |11〉 2.80× 10−35 9.57× 10−46 1.000

212.556 |1〉 |5〉 1.72× 10−35 6.08× 10−46 0.635

214.769 |1〉 |6〉 8.54× 10−35 3.05× 10−46 0.318

216.667 |1〉 |9〉 2.50× 10−35 8.98× 10−46 0.939
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Single Path Approximation, Mustafa et al.

QDT and OS Formulas, Basis Set 3

Richardson et al. femtosecond-excitation

Grib et al. femtosecond-excitation

Grib et al. nanosecond-excitation

Present Work nanosecond-excitation

Figure 5: Two-photon excitation cross-sections using basis set 3 as the basis of intermediate states, which
included 5s, 6s, 7s, 4d, 5d, and 6d states. Via quantum-defect theory (QDT) and oscillator strength formulas,
cross-sections were calculated and compared to the excitation data of Richardson et al., Grib et al., and our
lab. Richardson data was obtained by fs-laser excitation in a 1 bar, 95% Ar/5% gas mixture. Grib data were
obtained by both fs-laser and ns-laser excitations in a 1 atm, 77% N2/33% Kr gas mixture. Our lab data
was obtained via ns-laser excitation in 1 torr, 99% N2/1% Kr gas mixture to minimize collisional effects.
Calculated cross-sections and normalized experimental excitation data are listed in Appendix A.

V. Comparison of Two-Photon Cross-section Calculation with Experiment

Cross-section calculations are reported for eight excitation lines (192.749 nm, 193.494 nm, 193.947 nm,
202.316 nm, 204.196 nm, 212.556 nm, 214.769 nm, 216.667 nm) in Tables 7, 8, and 9 for basis sets 1, 2,
and 3 respectively. Due to short timescales, these cross-section calculations are then directly compared to

eNIST estimated accuracy of Einstein Coefficient. AAA ≤ 0.3%, AA ≤ 1%, A ≤ 3%, B+ ≤ 7%, B ≤ 10%, C+ ≤ 18%,
C ≤ 25%.
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Table 11: Experimental Kr Excitation Signal normalized against 212.556 nm Excitation Signal.

λL (nm) 202.316 204.196 212.556 214.769 216.667

Richardson et al. fs-excitation 0.20 0.13 1.00 0.14 0.21

Grib et al. fs-excitation (-) (-) 1.00 0.153 (-)

Grib et al. ns-excitation (-) (-) 1.00 0.132 (-)

Present Work ns-excitation (-) (-) 1.00 0.319 0.290

three sets of excitation spectrum data in Fig. 5 with good agreement. The first experimental data set is
from our lab’s nanosecond excitation at 212.556 nm, 214.769 nm, and 216.667 nm. Excitation lines at lower
wavelengths with the setup are not currently accessible. Additionally, we present the Richardson et al.13

excitation spectrum from a femtosecond excitation at 202.316 nm, 204.196 nm, 212.556 nm, 214.769 nm, and
216.667 nm. This spectrum approximates the impulse/natural response of the Kr atom. Due to the short
timescales of excitation of Richardson et al.,13 and due to the closely clustered energies of eight, two-photon
excited krypton states, the two-photon cross-section can be compared directly to the fluorescence results.
The plotted, relative fluorescence signal magnitudes for 212.556 nm and 214.769 nm excitation of Grib et
al.14 also agree with both Richardson et al.13 excitation spectrum and our excitation spectrum, regardless
of fs- or ns- laser excitation. Normalized experimental excitation data are listed in Table 11 for all considered
data sets. In Fig. 5, comparison is also made to the single-path approximation, whose cross-section values are
listed in Table 10. Single-path approximation is unable to reconstruct the experimentally observed excitation
spectrum, but it can obtain rough estimates of cross-sections.

The convergence of the summation over the intermediate basis set |k〉 is shown in tables 7, 8, and 9, which
agrees with the convergence criterion of Eq. 13: nmax ≤ 7. The rate of convergence cannot be inferred, but
for basis sets 1-3, the Richardson trend is present for the 212.556 nm, 214.769 nm, and 216.667 nm excitation
lines.

In Table 9, the calculated cross-section for 214.769 nm excitation is 4.18 × 10−35 cm4. This cross-section
agrees well with the experimentally measured 214.769 nm two-photon cross-section of Dakka et al.:33

5.2 ± 2.2 × 10−35 cm4. This validates the order of magnitude and accuracy of calculated cross-sections
for basis set 3.

Overall, the comparison of the calculated two-photon cross-sections with the experimental data of multiple
research groups is good for lines between 200-220 nm. Cross-sections for lines between 190-200 nm are
predictions calculated by the method described within this paper. The multi-path, finite basis approximation

of the two-photon transition matrix element, M
(2)
fg , generated context for each calculated excitation cross-

section. From a first order perturbation calculation, an entire excitation spectrum was constructed with
sufficient accuracy. This paper improved the effectiveness of first order perturbation theory for multiphoton
processes beyond a mere order of magnitude calculation.

VI. Experimental Setup

The experiments were performed in a test cell that had optical ports for a laser and camera. The cell was
maintained at room temperature. Two quiescent gas mixtures were used, 99% N2/1% Kr and 75% N2/20%
O2/5% Kr. The pressure was varied from 1-100 torr in the 99% N2/1% Kr mixture and from 1-50 torr in
the 75% N2/5% Kr/20% O2 mixture. The maximum pressure for the 75% N2/5% Kr/20% O2 mixture is
lower because beyond 50 torr the signal was entirely quenched owing to the presence of O2 at the current
laser power.

A frequency-doubled Quanta Ray Pro-350 Nd:YAG laser pumping a frequency tripled Sirah PrecisionScan
Dye Laser (DCM dye, DMSO solvent) is the approach used for nanosecond excitation in this work. A
schematic of the optical setup is shown in Fig. 6. The Nd:YAG laser pumps the dye laser with 1000 mJ/pulse
at a wavelength of 532 nm. The dye laser is tuned to output a 637.67/644.31/650.01 nm beam and frequency
tripling (Sirah THU 205) of the dye-laser output results in a 212.56/214.77/216.67 nm beam, with 3 mJ
energy, 1350 MHz linewidth and 7 ns pulsewidth at a repetition rate of 10 Hz. The write beam was focused
into the test section with a 200 mm focal-length, fused-silica lens. The beam fluence and spectral intensity
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Figure 6: Schematic of experimental setup. PDG refers to pulse delay generator.

at the waist were 1.28× 104 J/cm2 and 1.35× 103 W/(cm2 Hz), respectively.

Excitation of the Kr metastable state was accomplished by a continuous wave 2.65 W Toptica TA Pro
Laser diode, which outputted a λL = 769.45470 nm beam with a waist of 3.28 mm. The diode wavelength
was regulated by feedback control on the piezoelectric voltage input of the DCL Pro, which powered the
diode. The feedback and control signals were provided by a WS7-4150 Wavelength Meter, which measured
the wavelength of the diode to 0.00001 nm precision and implemented the PI-control law. Online tuning
obtained PI-control gains. The sampling rate of the wavelength meter was set between 90-100 ms. In order
to prevent saturation of the piezoelectric voltage, manual tuning of the diode diffraction grating via a 2.5 mm
Allen key was used to bring the diode within ±0.02 nm from the desired operating wavelength, prior to the
implementation of the control law.

The intensified CCD camera used for all experiments is a Princeton Instruments PIMAX-4 (PM4-1024i-
HR-FG-18-P46-CM) with a Nikon NIKKOR 24-85mm f/2.8-4D lens in “macro” mode and positioned ap-
proximately 200 mm from the write/read location. The camera gate opens once immediately after the write
laser pulse, for 50 ns to capture the fluorescence from transitions C, D, M, N, O in Fig. 1. The raw image
from the camera was processed using a Gaussian peak finding algorithm from O’Haver53 to quantify the
value of the peak in each row of the fluorescence image. The final value of the signal that is reported is the
average value of the peaks in the rows closest to the focus of the tagged line.

VII. Experimental Results

In Figs. 7 and 8, experimental data is presented for each stage of Kr laser-induced fluorescence (LIF)
to highlight physical features that would otherwise be difficult to model. One example would be the signal
contribution of radiative cascade in a cold, partially ionized Kr plasma and the relative SNR of laser excitation
schemes at different times ∆t after the rising edge of the laser pulse, both with and without an 800 nm
highpass filter.

In the fluorescence vs. pressure curves shown in Figs. 7 and 8, the 212.556 nm excitation line has the
greatest fluorescence of the lines considered at zero time delay, indicating its optimality for Kr-PLIF. Also
evident from Figs. 7 and 8 is that 216 nm is the best excitation line for KTV with the read excitation
performed with a CW laser diode.

Time-dependent phenomena such as pressure-dependent collisional de-excitation and collision-driven elec-
tron cooling54 become important and affect the fluorescence signal, notably more in air than in N2.

VIII. Conclusions

This paper presents multi-path, two-photon excitation cross-section calculations for krypton that compare
well to experiment for lines between 200-220 nm, as shown in fig. 5. Cross-sections were also calculated for
excitation wavelengths lying between 190-200 nm.
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Figure 7: Kr Fluorescence signal in 99% N2/1% Kr at Time ∆t after dye laser pulse: (Top Left) 0 ns,
(Top Right) 250 ns, (Bottom Left) 500 ns, and (Bottom Right) 1000 ns. This is two-laser excitation. A
769.4547 nm continuous diode was used to excite metastable Kr. The filter used was an 800 highpass filter.

To make these calculations, a hybrid method was used, consisting of oscillator-strengths, and where those
are unlisted in the NIST data, QDT, to evaluate reduced matrix elements 〈~r 〉 and purely radial matrix
elements 〈r〉. QDT was used to (1) construct radial wave functions for excited Kr states and (2) predict the
sign of tabulated and calculated oscillator strengths from NIST. Including the transition pathways unlisted
in the NIST data was key to increasing the accuracy of the calculation. These pathways were constructed
from a finite basis of states (listed in Table 5) consisting of 4p, 5s, 6s, 7s, 5p, 6p, 4d, 5d, and 6d orbitals.

Most importantly, this work provides a fundamental physical understanding in identifying the optimal Kr
fluorescence excitation line (i.e., Kr-PLIF or KTV). This paper resolved the fine structure nature of eight
5p and 6p Kr states produced by two-photon excitation. From this work and the successful comparison to
experiment from our lab and those in the literature, we conclude that the optimal line is 212.556 nm for
Kr-PLIF and single-laser KTV. For KTV where the read step in performed with a CW laser diode, the
216.667 nm write-laser excitation is optimal.
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Figure 8: Kr Fluorescence Signal in 5%-Kr, 20%-O2, and 75%-N2 at Time ∆t after laser pulse. (a) 0 ns,
(b) 250 ns, (c) 500 ns, and (d) 1000 ns.

method in the Hartree-Fock method.
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Appendix A: An Intermediate State in Two-Photon Excitation

This section is included to discuss the nature of intermediate states |i〉 and why it is valid to assume a basis
of normalized eigenstates |k〉. Consider intermediate state |i〉 composed of a linear combination of states |k〉,
weighted by coefficients cik:

|i〉 =
∑
k

cik |k〉 . (43)

A physical property that intermediate state |i〉 must satisfy is expected energy:

Eg + h̄ωL = 〈i| Ĥ |i〉 , (44)

where Ĥ is the Hamiltonian operator. Another property that must be satisfied is normalization:

1 = 〈i|i〉 =
∑
k,k′

δk,k′ckicik′ 〈k|k′〉 =
∑
k

ckicik. (45)

Let us revisit equation eq. (19) but perform the summation in the physical intermediate basis |i〉:

M
(2)
fg =

N∑
i=g

DfiGiiDig. (46)

Applying eqs. (43) and (45),

M
(2)
fg =

N∑
k=g

N∑
k′=g

N∑
i=g

δkk′Dfi(cikcki)Gii(cik′ck′i)Dig. (47)

Since |i〉 is expressed by basis set |k〉, cik is a diagonal matrix and k = i. Hence,

M
(2)
fg =

N∑
k=g

Dfk(ckkckk)Gkk(ckkckk)Dkg

=

N∑
k=g

DfkGkkDkg = êfDGDêg.

(48)

By recovering the result of eq. (19), basis set |k〉 correctly describes the intermediate state of two-photon
excitation. For intermediate states, it is not necessary to solve for a mixed state |i〉, i.e. the sum of
linearly weighted states described in eq. (45). Basis set |k〉 serves perfectly well, essentially due to the tensor
properties of the two-photon transition matrix M2.

Appendix B: Determination of Weighting parameter wt

The probability of a dipole transition occurring between two degenerate states in an isotropic electric field
is 1/wt. Thus, the weight on a single dipole moment is 1/

√
wt because the probability rate of a dipole

transition is proportional to the square of the dipole moment. This section also showcases the symmetry of
the 3j-Wigner symbol (the Clebsch-Gordan coefficient) due to the even parity of the sum, Ji + 1 + Jj , which
represents the sum of the first row. This further cements the symmetry of the dipole matrix D. Matrix D is
indeed a rank 2 tensor.

Case 1a: Transitions with lj = 0 to li = 1(
1 1 0

0 0 0

)
= −

1
√

3

(
1 1 0

−1 1 0

)
=

1
√

3

(
1 1 0

1 −1 0

)
=

1
√

3
(49)

In this case, there are three possible transitions: wt = 3. The 2-norm is 1.
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Case 1b: Transitions with lj = 1 to li = 0(
0 1 1

0 0 0

)
= −

1
√

3

(
0 1 1

0 1 −1

)
=

1
√

3

(
0 1 1

0 −1 1

)
=

1
√

3
(50)

This case also has three possible transitions: wt = 3. The 2-norm is 1.

Case 2a: Transitions with lj = 1 to li = 2(
2 1 1

0 0 0

)
=

√
2

15

(
2 1 1

0 1 −1

)
=

1
√

30

(
2 1 1

0 −1 1

)
=

1
√

30(
2 1 1

−1 1 0

)
= −

1
√

10

(
2 1 1

−1 0 1

)
= −

1
√

10

(
2 1 1

1 −1 0

)
= −

1
√

10(
2 1 1

1 0 −1

)
= −

1
√

10

(
2 1 1

−2 1 1

)
=

1
√

5

(
2 1 1

2 −1 −1

)
=

1
√

5

(51)

This case has nine possible transitions: wt = 9. The 2-norm is 1.

Case 2b: Transitions with lj = 2 to li = 1(
1 1 2

0 0 0

)
=

√
2

15

(
1 1 2

−1 1 0

)
=

1
√

30

(
1 1 2

1 −1 0

)
=

1
√

30(
1 1 2

0 1 −1

)
= −

1
√

10

(
1 1 2

0 −1 1

)
= −

1
√

10

(
1 1 2

1 0 −1

)
= −

1
√

10(
1 1 2

−1 0 1

)
= −

1
√

10

(
1 1 2

1 1 −2

)
=

1
√

5

(
1 1 2

−1 −1 2

)
=

1
√

5

(52)

This case also has nine possible transitions: wt = 9. The 2-norm is 1.
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